
J. Math. Biol. (2008) 56:15–49
DOI 10.1007/s00285-007-0122-6 Mathematical Biology

Computational methods in noncoding RNA research

Ariane Machado-Lima · Hernando A. del Portillo ·
Alan Mitchell Durham

Received: 1 January 2007 / Published online: 4 September 2007
© Springer-Verlag 2007

Abstract Non protein-coding RNAs (ncRNAs) are a research hotspot in bioinfor-
matics. Recent discoveries have revealed new ncRNA families performing a variety
of roles, from gene expression regulation to catalytic activities. It is also believed that
other families are still to be unveiled. Computational methods developed for protein
coding genes often fail when searching for ncRNAs. Noncoding RNAs functionality
is often heavily dependent on their secondary structure, which makes gene discovery
very different from protein coding RNA genes. This motivated the development of
specific methods for ncRNA research. This article reviews the main approaches used
to identify ncRNAs and predict secondary structure.
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1 Introduction

In a very recent past, RNAs were considered mere intermediates between the genome
and the proteins. Recent discoveries involving a variety of new ncRNA genes [85],
biological roles and action mechanisms have shown that the diversity and importance
of ncRNAs were underestimated [65]. Nowadays, it is known that functional RNAs
that do not code to proteins perform important roles.

They are involved in several cellular activities such as gene silencing [53], replica-
tion [48], gene expression regulation [79], transcription [155], chromosome stability
[9], protein stability [103], translocation [72] and localization [120] and RNA modi-
fication [88], processing [13] and stability [135]. New long antisense ncRNAs have
been found in many genomes, that seem to be involved in gene expression regulation
[65,98,113,114]. In addition, many more ncRNAs are expected to be unveiled [37,65].
It is even speculated that they can better explain the differences in complexity of the
several organisms than protein genes can do [86].

These new discoveries have motivated the ncRNA research in many aspects. For
instance, once the RNA structure and function are closely related, it is desirable to
know the common structure of homologous RNAs in order to discover functional
signatures. It is also desirable to scan a genome looking for ncRNAs. However, due to
the exponential number of possible solutions, RNA structure prediction is a complex
problem. In addition, strategies used in protein coding gene identification often fail
when searching for ncRNAs. As a result, in silico identification of ncRNAs is still an
open problem in bioinformatics [38,89,99].

Different approaches have their own strengths and weaknesses, each one being
more suitable for specific problem domains. In this article, we present a review of
computational methods for ncRNA-related problems. Due to the wide literature on
the area, our first goal is not to do an exhaustive survey. Instead, we intend to review
the main approaches applied so far by commenting some methods, and point the main
strengths and weaknesses of each one depending on the problem domain. In Sect. 2
we briefly describe the main components of an RNA secondary structure. In Sect. 3
we present the main problems involving ncRNAs and the main approaches used to
address them. In Sects. 4–6 we discuss each problem separately. Finally, in Sect. 7 we
discuss some perspectives and make concluding remarks. In Appendix we present a
list of all available programs or web servers of the methods cited here.

2 RNA secondary structure

Most of the RNAs are single-stranded molecules and can fold forming base pairings.
These pairings often occur between the bases G and C, A and U, and, occasionally
between G and U.

Formally, let x = x1x2 . . . xn be an RNA sequence, where xi ∈ {A, C, G, U} for
i = 1, . . . , n.

Definition 1 A secondary structure of x is a set of base pairs P = {(i, j)|i < j} with
the following constraints [21]:

1. if (i, j) ∈ P then (xi , x j ) ∈ {(G, C), (C, G), (A, U), (U, A), (G, U), (U, G)}
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Fig. 1 Structural components of an RNA secondary structure

2. if (i, j) ∈ P and (i, l) ∈ P then j = l
3. if (i, j) ∈ P and (k, j) ∈ P then i = k
4. if (i, j) ∈ P then j − i < θ

5. if (i, j) ∈ P and (k, l) ∈ P and i < k < j then i < k < l < j .

These pairings form structural components (Fig. 1) known as:

– helix or stem: a contiguous stacking of base pairs (two stacking base pairs are (i, j)
and (i + 1, j − 1));

– loop: a region of unpaired bases;
– hairpin loop: a loop enclosed by a helix;
– multi-loop: a loop region from which three or more helices arise;
– internal loop: a loop inside a helix; an internal loop is asymmetric if the number of

nucleotides in each side of the helix is different, and symmetric otherwise;
– bulge: a loop inside a helix but occurring at only one side of it.

In addition to the secondary structure defined above, base pairs can be part of two
other structures: pseudoknots (that violate constraints 2 and 3) and base triples (that
violate constraint 5). These other base interactions are considered part of the tertiary
structure.

3 Problems and general approaches in ncRNA research

3.1 Three main problems

An ncRNA often requires a specific three-dimensional structure to perform its function.
Since the three-dimensional structure is determined by the secondary structure, the last
is used as an approximation in the study structure–function. The secondary structure
in turn is defined by the primary sequence. Therefore, tools to predict the secondary
structure from an RNA sequence are useful to study its function. When, instead of one
sequence, a set of homologous RNAs is known, its consensus secondary structure can
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be more reliably predicted. Moreover, the conservation of structural domains across
different species are additional evidence that they are related with the specific function
of these sequences. Therefore, prediction of conserved structures are useful to discover
and characterize signatures for a specific RNA family.

Structure comparison can serve many purposes. For instance, it can be used to
classify an unknown RNA as member of a known family by comparing its structure
with the consensus structure of the several known families. In addition, if the func-
tion of a single RNA or of a family is not known, it can be inferred by comparing
the RNA structure (or consensus in the case of a family) with a database of functio-
nally annotated structural signatures. In addition, structural comparison can be used to
detect the occurrence of different stable structures for the same molecule (which may
indicate possible structural switching related to its role), to predict mutations in an
RNA sequence that causes rearrangements in the secondary structure and to compare
a set of structures to choose a representative.

Finally, we can use structure prediction and comparison to search whole genomes
for ncRNA sequences, either searching RNAs homologous to a specific candidate or
family of candidates, or looking for all ncRNAs, including new families still unknown.

In summary the ncRNA research involves three main types of problems:

– secondary structure prediction;
– secondary structure comparison and
– noncoding RNA identification.

The methods described in this paper are classified according to these three pro-
blems. For each one of them, most of the computational methods do not consider
pseudoknots, since they are considered a tertiary interaction. However, the prediction
of these structures may be desirable. The general problem of pseudoknot prediction is
computationally unfeasible yet, due to the NP-completeness of RNA secondary struc-
ture prediction with general pseudoknots [91]. Methods that deal with them often pose
constraints in the pseudoknot structure in order to make the problem tractable, but they
may be still impractical for long sequences [110,117]. Throughout the paper, we point
the methods that consider pseudoknots and their time and memory complexities.

Time and memory complexities are also mentioned when this information is an
important issue that differentiates alternative methods for a specific problem
(Sect. 4.2.3).

3.2 Three main approaches

When dealing with a specific RNA problem, ab initio and comparative strategies can be
applied. Ab initio methods, in the context of this review, deal with a single sequence,
whereas comparative methods analyze a set of sequences. Three main approaches
can be applied to the problem, thermodynamic, probabilistic and covariation-based.
Independently of the strategy, a method may use one or more approaches to model
the RNA structure problem. Thermodynamic and probabilistic approaches can be
explored by both ab initio and comparative strategies. Covariation analysis, however,
can be applied only in comparative methods. Each one has different assumptions about
ncRNA problems. Therefore, methods based on the same approach share strengths and
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weaknesses. Since these approaches are not mutually exclusive, a combination of them
can decrease their individual limitations.

Thermodynamic approach This approach is based on the Gibbs free energy value
of RNA structures [141]. The free energy of an RNA structure is computed under
the nearest-neighbor model. This model considers that the energy associated with a
structural motif is only dependent on the nucleotides of this motif and on the adjacent
nucleotide interactions [141]. The nearest-neighbor model is then composed of a set of
parameters defining the energy associated to a variety of neighbor interactions. These
thermodynamic parameters have been experimentally estimated since 1971 [138] and
remain being improved [93]. However, these measures still carry experimental and
precision errors that limit the structure prediction accuracy to approximately 50–75%
[40]. Efforts to estimate these thermodynamic parameters statistically using RNA
structure databases have shown promising results [29].

Probabilistic approach This approach assumes that there is a probability distribution
over the set being characterized, such as sequences, structures or alignments. Proba-
bilistic models are built estimating parameters from a set of known examples called
training sample. The advantage of this approach is that it uses a well-defined theo-
retical framework for doing statistics over the solution space. Furthermore, different
probabilistic models can be designed to characterize different features. This flexibi-
lity allows the building of different models for specific RNA families [35], which
is particularly important for sequence classification. Sophisticated models can be
designed, but wrong assumptions may lead to a model that supplies wrong results.
In addition, the increase in the sophistication level can be accompanied of an increase
in the number of parameters to be estimated. This may demand larger training samples,
sometimes not available. Finally, a biased training sample may lead to a biased model.
Therefore, the quality of the estimated model depends not only on the model design
but also on the size and quality of the available training sample.

Covariation analysis Homologous RNAs have common ancestry and function and
are expected to have similar structures and some similarity in sequence. When com-
paring two or more homologous RNA sequences, if a hypothetical base pair in one
sequence (G–C, for instance) is different in the other sequences but is still a valid base
pair (such as A–U), it can be considered evidence of selective pressure to maintain the
base pair. Therefore, it can be used as support for the existence of that pairing [66].
Double mutations preserving a base pair are known as compensatory mutations and
the process of detecting them is called covariation analysis. To detect these compen-
satory mutations, some methods model each sequence position as a random variable
and calculate the mutual information of each pair of random variables. Note, however,
that it is not necessary the two bases covary, since some point mutations, such as G–C
to G–U, are still evidence for base pairing. Therefore, methods that just search for
covariation miss valuable information. The main advantage of covariation analysis is
the use of information of a specific gene family to gain in accuracy. However, com-
pensatory mutations are often searched by scrutinizing columns of a multiple align-
ment. To achieve success, the sequences being analysed must be conserved enough to
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allow an accurate multiple alignment and distinct enough to show covariations [66].
Errors in the multiple alignment might affect the accuracy of the methods. Another
obvious disadvantage is that covariation analysis can not deal with isolated sequences.
Other drawbacks are specific to each specific RNA problem, being described in
Sects. 4–6.

4 Secondary structure prediction

Given an RNA sequence, the number of possible secondary structures grows expo-
nentially with the sequence length [149]. The issue is how to search a structure in this
exponential solution space in order to choose the best structure. When the secondary
structure of just one RNA sequence needs to be predicted, only ab initio methods can
be used. If a set of homologous RNAs is available, comparative methods can predict
the consensus structure more accurately [66].

4.1 Ab initio methods: prediction from a single sequence

4.1.1 Thermodynamic predictors

Thermodynamic predictors explore the hypothesis that an RNA molecule is folded
in the most thermodynamically stable structure, that is, the one having the minimum
free energy (MFE). A straightforward approach is to enumerate all possible struc-
tures and then select the one with the minimum value for the free energy [109], but
the exponential time complexity spent in the enumeration step is unfeasible but for
the smallest sequences. To deal with this complexity issue, all current methods use
a dynamic programming method first proposed by Nussinov et al. [104] that reduces
the time complexity to O(n3). However, the straightforward MFE structure may not
be the correct one. Not only there are errors in the thermodynamic parameters and
unknown thermodynamic rules but, most important, the MFE structure may not be the
one adopted by the RNA. The correct structure may be among the sub-optimal free
energy ones [56]. In this case, the analysis of the space of possible structures (folding
space) can supply clues about the most probable structures and motifs. Finally, algo-
rithms can be based on the hypothesis that an RNA molecule may assume the easiest
structure to be formed due to kinetic traps in the folding process, that is, due to the
foldings that occur incrementally when the RNA molecule is synthesized.

Minimum free energy

The current methods that compute secondary structure are non-trivial extensions
of the Nussinov’s algorithm, but keeping the time complexity of O(n3) when pseu-
doknots are not allowed. They also consider several possible features of the structu-
ral components such as interior loop symmetry/asymmetry and coaxial stacking of
helices.
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Some of the programs that compute the secondary structure with minimum free
energy are MFOLD [158,160], RNAfold [59], RNASTRUCTURE [93], PKNOTS [117]
and pknotsRG [110,130].

In particular, the last two methods include the prediction of pseudoknots. Both
impose restrictions on the kind of pseudoknots found in order to reduce the theoretical
complexity of the problem, PKNOTS being more general (time complexity of O(n6)

and memory complexity of O(n4)) and pknotsRG more restrictive (O(n4) for time
and O(n2) for memory).1

Folding space analysis

Methods that perform folding space analysis explore sub-optimal structures in order
to create a more accurate profile of what type of structures (or sub-structures) are more
likely to occur in real situations.

In order to efficiently analyze the structure space, most methods use the Boltzmann
distribution to model the probability of a structure. This probability is given by the
equation:

PS = exp(−ES/RT )

Z(T )
(1)

where ES is the free energy of the structure S, R is the gas constant, T is the temperature
in Kelvin and Z(T ), known as partition function, is:

Z =
∑

S′
exp(−ES′/RT ) (2)

that is calculated using dynamic programming, i.e., without enumerating all possible
structures.

This structure probability PS can be used to extract other information. McCaskill
[96] proposed a formula to compute the probability of any two nucleotides in different
positions to be paired in a secondary structure. The probability of each base pair (i, j)
in a molecule is given by:

Pi j =
∑

(i, j)∈S

PS (3)

These values compose a thermodynamic base pair probability matrix, that can be
analysed in order to detect well-defined helices. This matrix is calculated byRNAfold
[59] and RNASTRUCTURE [93].

The NUPACK program [32,33] uses a more general partition function that is able
to include a class of physically relevant pseudoknots, but demanding O(n5) time.2

The Boltzmann distribution can also be used to partition the folding space by ranges
of energy values in an approach known as density of states [19,21,27]. States3 that

1 It is noteworthy that the success of thermodynamic methods that attempt to deal with pseudoknots is
limited, specially because experimental data is still scarce for a good estimation of pseudoknots energy
parameters.
2 The McCaskill’s algorithm demands O(n3) time without considering pseudoknots [96].
3 A state is a part corresponding to a single energy range.
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are dense in structures may indicate possible stable intermediate structures. In
particular some of these structures can be “kinetic traps” formed during folding/
unfolding process [18].

If all structures in a specific energetic range are enumerated, different analysis
can be performed, such as calculation of the most probable motifs or structure clus-
terings. RNAsubopt [153] pioneered such an exhaustive enumeration. It generates
all suboptimal structures having energy in an user-defined range from the MFE. To
compensate for the excessively large number of such structures for longer sequences,
Sfold [16,30,31] produces a sampling of the complete structure space using the
Boltzmann distribution. Analyses can now be performed over this sample, once it
has, theoretically, the same distribution of the whole folding space. This program also
identifies clusters of the sampled structures, based on structural similarity, and selects
a representative of each cluster, called centroid. The centroid is the structure having
the minimum base pair distance to all other structures in the cluster. The program
returns the MFE structure, the cluster centroids and the ensemble centroid (that is, the
centroid for all sampled structures).

Many alternative structures share the same structural pattern, or shape.4 Therefore,
the shape can also be used to produce a partition of the folding space of a particular
RNA molecule. RNAshapes [134,144] performs shape partition and ascribes to each
shape a probability value consisting of the sum of the Boltzmann probabilities of all
structures in the corresponding part. RNAshapes also reports the MFE structure for
each part.5

A last approach is used by MFOLD [157] which, instead of using the Boltzmann
distribution, computes the h-num(i,j) quantity, a measure applied to pairs of positions
in the RNA molecule that indicates the level of pairing promiscuity between the bases
at positions i and j . Well-determined pairings are expected to have low h-num values
[159].

Kinetic folding

Kinetic folding algorithms are based on the hypothesis that the final structure of an
RNA molecule depends on local rather than on global dependencies. In other words,
during the folding process, optimal sub-structures may be formed, acting as kinetic
traps and precluding the globally optimal structure to be achieved.

A common approach is to build the composite structure starting from individual
helices. Abrahams et al. [1] developed an algorithm that first finds all possible helices,
then incrementally builds the final structure by selecting, at each step, the helix that
minimizes the free energy of the current structure, allowing the introduction of pseu-
doknots. Schmitz and Steger developed a similar algorithm [129], but allowing the
removal of current helices of the structure when the newly formed structure leads to
pseudoknots or overlaps (bases participating in different helices). RDfolder [156]

4 We can informally define the shape as the visual appearance of the structure, such as a clover-leaf format,
a particular succession of helices, etc.
5 These two components, representative energy and shape probability, are not redundant, since the shape
having the optimal representative is not necessarily the most probable one.
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uses a Monte Carlo approach to implement a variation of the second algorithm: the
basic structure building cycle is performed many times, randomly selecting the helices
to be added, but not allowing helix removal. If the sequence is small (up to 150 bases),
the predicted structure is the most frequent one among all runs. For larger sequences,
to avoid an exponential increase in the number of simulations, the program counts
instead the frequency of each helix and then builds the final structure incrementally
selecting the most frequent helices that are compatible with the partial structure.
RNAKinetics [28] takes this process further by taking into account the fact that

RNA molecules may start the folding process during transcription [97]. So, the rate
and direction of transcription are taken into account when calculating the helices to
be added or removed from the structure. The folding simulation is parameterized by
assigning random variables to compute the number of simulation steps and the time
increment used in the folding simulation. The program presents the list of most likely
structures sorted by their lifetimes.

A different Monte Carlo approach is to work at a smaller granularity level, simu-
lating formation and disruption of single base pairs instead of complete helices. This
strategy is adopted inKinfold [43], which models RNA folding as a Markov process
in the folding space.
HotKnots [115] adopts the strategy of pruning the initial helix space used to incre-

mentally build the RNA structures. In this approach only sets of promising hotspots are
used. A hotspot is a helix-like substructure comprised of stacked pairs, 1-base bulges
and 2-bases symmetric interior loops. A set of hotspots is promising if the difference
of the MFE of the sequence constrained by the hotspots is at most 80% higher than
the MFE of the unconstrained sequence. This program also predicts pseudoknots.

4.1.2 A probabilistic model

Different from the thermodynamic approach, where parameters are experimentally
estimated, with probabilistic models we can estimate the parameter values for dif-
ferent RNA families, using data from RNA structure databases. Since this estimation
is automatic and fast, different models can be built and tested in order to explore
alternative features in RNA structure modelling.
CONTRAfold [34] is a program that uses a Conditional Log Linear Model (CLLM),

a generalization of Stochastic Context Free Grammars (SCFGs). This model is marked
by three main innovations: discriminative training, flexible parameterization and an
accuracy-adjustable optimization. CLLMs parameterize the conditional probability
of a structure as a log linear function of the model parameters. This discriminative
model is claimed to have a prediction power superior to generative models, which des-
cribes the joint probability of sequences and structures. In addition, the CONTRAfold
parameters are not restricted to probabilities of traditional SCFG rules. Instead, they
are scores for 13 structural features such as base pairs, lengths of hairpins, helices,
bulge loops and internal loop and internal loop asymmetry. Finally, the predicted struc-
ture is not the one that maximizes the structure score, but the one that maximizes the
expected accuracy. This accuracy is a user-defined trade-off between sensitivity and
specificity of base pair predictions.

123



24 A. Machado-Lima et al.

4.1.3 Other approaches

Different strategies can be combined to try to improve the quality of structural predic-
tions.

Graph theory can be used to maximize numerical scores used to evaluate pos-
sible secondary structures for different scoring systems. Maximum Weighted
Matching (MWM) [136] is a graph-based program that can be used to predict both
single sequence structure and consensus structure of multiple sequences, including
pseudoknots.6 A graph is built with nodes representing bases and edges connecting
possible pairings. The edges are weighted according to some score, such as thermody-
namic or probabilistic values. Candidate secondary structures are matching subgraphs,
i.e., subgraphs having nodes connected to at most one other node. The optimal struc-
ture can be found searching for the matching subgraph that has the highest total edge
weight. MWM can also be used for detecting base triples.

Nussinov’s dynamic programming algorithm was developed to maximize the num-
ber of base pairs in a structure prediction [104]. The same simple scoring scheme can
be used with the ideas of Kinetic Analysis and Fold Space Analysis, out of the context
of thermodynamics.7 Iterated Loop Matching (ILM) [121,122] performs
the original Nussinov’s algorithm iteratively. In each iteration the best helix is selec-
ted for the final structure and cut out of the sequence for the next iteration. Since
hairpin loops are never removed the algorithm can detect pseudoknots.8 Although
there is no guarantee of optimality, it has shown better results when compared to
MWM. RNALOSS [22] also uses maximization of the number of base pairs. These
parameters are used with the Boltzmann distribution to perform a density of states
analysis.

4.2 Comparative methods

When trying to find the best consensus structure for a family of ncRNA molecules, the
ideal situation would be to have the biologically validated secondary structures for each
one of them, and then calculate the consensus. Unfortunately, the number of validated
structures is very small. Most of the available structures are the result of predictions.
In this context, the best situation is when the set of sequences is similar enough for
a multiple alignment to be produced, and variant enough to show covariations. If
such adequate alignment cannot be found but we have structures for these molecules,
this information can be used in the search for a consensus. An alternative is just to
consider the plain sequences and try to build the consensus structure from scratch. We
will classify comparative structure predictors into three groups according to the input
they receive:

1. aligned and unfolded sequences,

6 Time and memory complexities of O(n3) and O(n2), respectively.
7 In fact these are related measures, since the structure energy depends, among other characteristics, on the
number of base pairs of a structure.
8 The worst and average case time complexity are O(n4) and O(n3).
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2. unaligned and individually folded sequences and
3. unaligned and unfolded sequences.

4.2.1 Prediction from aligned and unfolded sequences

Since a multiple alignment is available, the straightforward approach is searching for
covariations. In addition, other information can be used to assign weight to the this
covariation data, such as phylogenetic and thermodynamic data.

Covariation only methods

If a score system such as mutual information is used to describe covariations, me-
thods such as Nussinov’s algorithm [104], Maximum Weighted Matching [136]
orIteratedLoop Matching [121,122]—all used to predict the secondary struc-
ture of a single molecule (Sect. 4.1)—can be applied to detect the optimal consensus
secondary structure [41]. Then, the algorithms need to consider columns of the mul-
tiple alignment instead of individual nucleotide positions of a single sequence.

Including phylogenetic information

Score systems based only on covariations do not take into account evolutionary infor-
mation involving these covariations. This information is used in the approach known
as Tree Model [51]. A phylogenetic tree and mutation rate matrices (for base pairs
and unpaired nucleotides) are used to compute the posterior probability of two columns
being paired or unpaired. Phylogenetic trees can better discriminate between column
pairs having strong or weak evidence of base pairing. This discrimination comes from
the evolutionary ordering of the sequences imposed by the tree. This ordering shows
the minimum number of events of compensatory mutations in each column pair. If,
for instance, two column pairs have the same number of G–C and A–U pairs, the tree
may indicate different numbers of paired mutation events. The larger the number of
required mutation events, the stronger is the pairing evidence. Because of this extra
sensitivity, the Tree Model performs better than other methods based exclusively
on mutual information.

Akmaev et al. [2] also used phylogenetic models to propose a set of statistics to
decide if two columns of a multiple alignment are paired or not. Akmaev’s approach,
however, is extended also to base-triples.

A third phylogenetic approach is adopted by Pfold [76,77], which combines
an evolutionary model of RNA sequences with a probabilistic model of secondary
structures. These are used to calculate a phylogenetic tree and a consensus structure
from a multiple alignment. The evolutionary model consists of a set of nucleotide
probabilities and mutation rates for paired and unpaired bases, all estimated from
a large sample of RNAs. The probabilistic model is a fixed stochastic context free
grammar estimated from the same (folded) RNA sample used to estimate the mutation
rates. Pfold achieves reasonable results even using two sequences.

Based on the same ideas of Pfold, RNA-Decoder [106] goes further and models
phylogenetic and probabilistic models for coding and noncoding sequences. The
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phylogenetic model is built using different sub-models for noncoding/coding regions,
in particular characterizing the different mutation rates due to selective pressure for
aminoacid conservation in coding regions. In particular, RNA-Decoder can be used
to scan alignments of whole genomes (viral, for instance) or even messenger RNAs
(mRNAs) to identify putative conserved secondary structures with fewer false posi-
tives than when using other methods [106].

Including thermodynamic information

Some methods also explore thermodynamic information in their analyses.X2 [70] uses
a weighted linear combination of covariation, thermodynamic and heuristic values to
sort column-pairs from the multiple alignment. The thermodynamic term is based
on the energy value of the most stable base pair in a column-pair.9 The heuristic
term controls the distance between paired bases close to an optimal value, favoring
local pairings. The high-scoring paired regions are included in the final structure
progressively, according to the score sorting and avoiding overlapping. This assembly
allows the formation of pseudoknotted structures.
ConStruct [90], combines all individual thermodynamic probability matrices

(Sect. 4.1.1, Eq. 3) in a consensus matrix, which is used to supply the most thermody-
namically probable consensus structure. To calculate this consensus matrix, gaps are
inserted in individual matrices guided by the gaps in the multiple alignment. These
matrices, now having the same dimension, are combined using an equation that takes
into account sequence weights, in order to avoid over-representation of highly similar
sequences. To alleviate the impact of alignment errors, the consensus structure and the
alignment are graphically presented to the user, who can manually adjust the align-
ment. If the alignment is edited, the new alignment generates a new matrix alignment,
restarting the process. Since covariations are not analysed, it can detect a consensus
structure even in highly conserved regions.
RNAalifold [61] combines covariation and thermodynamic information in a

score system to be used directly in the folding algorithm. That is, the dynamic pro-
gramming matrix is calculated only once for the entire alignment. If the input sequences
do not have a common folding, no structure is output.

Since both RNAalifold and ConStruct have a consensus matrix, they can be
used to calculate suboptimal structures, base pair probabilities and perform folding
space analysis, instead of predicting only the optimal structure.

Each of X2 and RNAalifold explicitly combine specific sources of information
in a single score system using pre-determined weights. BayesFold [75] proposes
a bayesian strategy to combine any kind and number of data sources, without being
dependent of arbitrary choices about weights.10 Initially RNAsubopt is used to pro-
duce a first list of candidate structures (Hk). A uniform probability distribution is
ascribed to these first candidates (D0). Then, to each structure (Hi ), a combined pro-
bability is ascribed using the different sources (D j ) of information by sequentially

9 Optionally, it can be calculated as the average energy value of all pairings of the column-pair.
10 Although it has a flexible schema for data source combination, it is initially implemented to combine
thermodynamic value, mutual information and chemical maps.
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applying the Bayes formula:

P(Hi |D j+1) = P(Hi |D j )P(D j+1|Hi )/

(
∑

k

P(Hk |D j )P(D j+1|Hk)

)
, (4)

In other words, the probability of a structure given a source of information is combined
with the probability of the same structure using another source by considering the first
an a priori information for the calculation of the second, and assuming all data sources
are independent.

4.2.2 Prediction from unaligned and folded sequences

When the input is a set of folded but unaligned sequences, the challenge is to produce
a structural alignment of these sequences, detecting the consensus structure of the
RNA family. For multiple structural alignment, the problem is similar to the standard
multiple alignment of DNA sequences: computing the optimal multiple alignment is
a problem where the solution has exponential time complexity11 [71]. In this spirit,
all approaches have two algorithms, the algorithm to align two sequences and the
heuristic approach to perform multiple alignments incrementally aligning sequences
or partial consensus two at a time.

An RNA structure can be represented as a tree.12 Then, aligning two structures can
be translated into the problem of aligning two trees [69]. If we describe each local
secondary structure as a separate tree, the problem of aligning two structures is then
translated into the problem of aligning a forest of trees. This is the approach used by
RNAForester [57]. The advantage of the forest approach is that alignments now
have a “local” flavor, permitting the program to find similar sub-structures when the
global structures are divergent, and therefore detected conserved motifs in two RNA
structures. RNAforester also performs global multiple forest alignment [58,111].

Another possible RNA structure representation is arc-annotated sequences where
arcs connect paired bases. Aligning two structures in this representation means ali-
gning both bases and arcs. RNA_align [68] performs this alignment by maximizing
the score given by eight possible events: three events for unpaired bases (base-match,
base-mismatch and base-deletion) and five events for arcs and their base pairs
(arc-match, arc-mismatch, arc-removing, arc-altering and arc-breaking, the last three
being particular cases of disruption of an arc).
MARNA [133] performs multiple structural alignment usingRNA_align to perform

the pairwise alignments and T-Coffee [102] to perform the progressive multiple ali-
gnment. Once the multiple alignment is built, a variant of Nussinov’s algorithm
[104] is used to predict the consensus structure that maximizes the number of base
pairs conserved across a specific number of sequences. MARNA also accepts
unfolded input sequences. In this case, it can predict one structure for each sequence

11 The optimal dynamic programming solution has time O(nk ) for k sequences, but solutions with optimal
SP-scores are proven to be NP-hard [71].
12 In this tree we have nodes to represent pairings, and leaves to represent unpaired nucleotides.
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(MFE structure) or several suboptimal ones (using RNAshapes [134] or a stochastic
backtracking of RNAsubopt [59]).

4.2.3 Prediction from unaligned and unfolded sequences

Some methods receive only the plain sequences as input. Therefore they have to
fold and align the input sequences. Some of these methods perform this task in two
steps, first fold then align,13 and others perform the folding and the alignment simulta-
neously. Two-step methods, although they seem similar to those of group 2 (prediction
from unaligned and folded sequences), have the advantage that they do not consider
the information of only one structure of each input sequence to build the consensus
structure. Instead, they take into account alternative structures. Simultaneous folding
and alignment methods have the most attractive proposal. However, their drawback
is the high time and memory complexities, exponential in the number of sequences.
Although polynomial when applied for only two sequences, they are still time and
memory expensive for real applications. Simplifications and heuristics are needed to
deal with it.

Two-step methods

Briefly, these methods perform two phases: first, the prediction of a set of structures
for each input sequence, usually using thermodynamic values; second, the selection of
one consensus structure based on the sets of structural folds obtained in the first phase.
The main difference among the methods is found in the similarity measure used to
select the conserved structure and on the granularity of the initial folds (global folds
vs. local folds).

Some predictors consider only the structural similarity, not taking into account the
primary sequence. Therefore, they are suitable when comparing remote homologous
sequences that present little primary sequence conservation. Examples are the method
proposed by Bouthinon and Soldano [12] and RNAGA [17].

The method described by Bouthinon and Soldano [12] finds the individual sets of
structures by detecting palindromes. Each palindrome represents a possible helix in a
final folding, and a combination of compatible palindromes represents a possible fold.
For each input sequence the only combinations with free energy values below an user-
defined threshold are computed, and the combination with the lowest free energy value
is selected. The set of the largest structural patterns (palindrome combinations) that
occur in at least q sequences (q ≤ n, n = number of input sequences) is computed,
representing the candidates for the consensus structure. The algorithm selects the
structural pattern of this final set that occurs less frequently in in random sequences
generated by shufflings of the input sequences.

The program RNAGA [17] uses two genetic algorithm: the first one produces,
for each sequence, a set of global structures; the second one generates a list of

13 A method can also first align then fold the sequences. However, they often merely uses a third party
software (CLUSTALW [44]) to produce a single initial multiple alignment. Therefore this case was included
in Sect. 4.2.1.
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candidate consensus structure. Both algorithms use operators that add and remove
helices according some criteria. The first algorithm prefers helices that decrease the
energy of the new individual, whereas the second one prefers helices with a high
structural conservation score.

Since the number of possible structures grows with the sequence length, the num-
ber of spurious common structures grows as well [12]. This effect can be decreased
by taking into account the primary sequence during the structure comparison. The
programs CARNAC [139] and comRNA [67] implement this strategy by using regions
of primary sequence conservation as anchors to constrain the pairwise structural ali-
gnment of all pairs of the input sequences. From these alignments, they select a set P
of pairwise conserved helices, i.e., a set

P = {(h A
i , hB

j )|h A
i and hB

j are conserved in the sequences A and B}.

CARNAC and comRNA use two different criteria for this selection, but both require
that two conserved helices must fall between the same anchors. CARNAC requires
at least one compensatory mutation in the helix pair [107], whereas comRNA com-
pares the similarities in helix length, helix energy, helix sequence and loop sequence
(unpaired bases enclosed by the helix). Both programs build a graph where each selec-
ted helix h X

k is represented as a node and is connected to the node hY
l iff (h X

k , hY
l ) ∈ P .

In the graph produced by CARNAC, connected components14 represent conserved
helices that are candidates to participate in the final consensus structure. These com-
ponents are scored based on topological features such as number of nodes and edges,
since these features indicate the conservation level of the helices among all sequences.
The final structure is built in a greedy approach by adding the compatible helices15

represented by the best scored connected components. Therefore, helices do not have
to be conserved in all sequences to be detected. The comRNA graph is an m-partite16

graph, where each partition is made up of nodes from the same sequence and m is
the number of input sequences. A helix conserved in at least k sequences is a clique
having at least k nodes.17 Therefore, the program searches all maximal cliques with
size at least k. The larger cliques are selected to compose the final structure, allowing
formation of pseudoknots.18

If on one hand similarity based only on structure leads to spurious consensus struc-
tures, on the other hand the dependence on the primary sequence conservation is a trap
when dealing with very divergent sequences. Attacking this issue, RNAscf [4] uses
conserved helices as anchors, and primary sequence only as additional informational.

14 The connected components of a graph are the equivalence classes of vertices under the “is reachable
from” relation [25].
15 Two helices are considered compatible if they do not overlap or form a pseudo-knotted structure.
16 An m-partite graph is a graph where the set of nodes can be divided into m disjoint sets such that any
edge of the graph has endpoints in different sets.
17 A clique is a complete subgraph, i.e., a subgraph in which all nodes are connected to all nodes.
18 Although the algorithm for clique searching is exponential in the number of input sequences, its imple-
mentation in comRNA has an acceptable average processing time, allowing analysis of 18 sequences up to
300nt each [67].
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The initial step consists in filtering spurious short helices by selecting, for each
sequence, all possible helices with a minimum length with a thermodynamic value
not exceeding a pre-defined threshold. Compatible helices conserved in all sequences
are used as anchors for the multiple alignment. Each anchor helix generates a set of
alignment blocks: blocks for the helices and blocks for the unpaired regions between
the helix sides. Each block is globally aligned according to a mixture of thermody-
namic and similarity scores, but using different score values for blocks coming from
paired or unpaired regions.

Simultaneous folding and alignment

Simultaneously folding and aligning sequences is an optimization problem, where the
optimal solution in the joint problem may not coincide with the optimal solutions for
each sub-problem individually. This optimization can be deterministic or stochastic.
Deterministic optimization produces a single solution for each input and parameters.
Stochastic optimization has as a goal to explore alternatives in the solution space.

Deterministic optimization

Sankoff proposed a dynamic programming algorithm to optimize the folding and
alignment using a score system composed by thermodynamic parameters and align-
ment scores [125]. However, the O(n3m) time and O(n2m) memory requirements
(n = typical sequence length and m = number of sequences) of the unconstrained ver-
sion limit the application to only two short sequences. Since then, many Sankoff
variants have been developed by adding heuristics or simplifications to speed up the
original algorithm. Examples are Dynalign [92,94], PMComp and PMMulti [60],
Stemloc [63], Consan [36], FoldAlign [46] and SLASH [47].
Dynalign [92,94] is based on the original Sankoff algorithm. Imposing a limit

w on the distance between two aligned nucleotides, time and memory complexities
are reduced, respectively, to O(n3w3) and to O(n2w2). The score system is purely
structural, which makes it attractive for application on divergent sequences.
PMMulti [60] performs a structural multiple alignment of a set of sequences

using a companion program, PMComp to perform pairwise alignments.19 PMComp
uses the same distance limiting strategy of Dynalign to compute pairwise structural
alignments. However, instead of implementing the thermodynamic rules, it uses the
thermodynamic information from the base pair probability matrices computed for each
input sequences. Dynamic programming recursions involving unpaired bases use an
unpaired substitution score. Recursions involving base pairs (i, j) in the sequence
A and (k, l) in the sequence B combine a paired substitution score, a covariation
score and a thermodynamic-based probability score based on the joint probability of
(i, j) and (k, l) being paired. More specifically, given two probability matrices PA

and PB for the sequences A and B, respectively, the probability score is calculated as

19 Actually, for the sake of speed, the first phase of calculation, where the initial unfolded sequences are
aligned two at a time, PMMulti uses a coarser alignment of probabilities using an algorithm described in
[10].
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log(PA(i, j)/pmin)+log(PB(k, l)/pmin), where pmin is the minimum pair probability
that is deemed significant. This strategy, together with the alignment distance constrain,
allows PMComp to run in O(n4) time and O(n3) memory.

Two methods, Stemloc [63] and Consan [36], use a Pair Stochastic Context
Free Grammars (Pair SCFGs) as probabilistic models and impose restrictions in the
parsing algorithm to obtain gains in efficiency. Stemloc provides a flexible schema
to impose user-defined constrains over the alignment, over the folding of one sequence
and over the folding of two sequences. The program uses parsers adapted to restrict the
syntactic analysis to envelopes defined by the constrains, reducing time and memory
usage [64].
Consan [36] uses pins, a specific type of alignment anchor. A pin is a pair of posi-

tions from the two input sequences that have a high probability of being aligned. Two
consecutive pins define alignment boundaries, where the alignment/folding is per-
formed. The pins are selected from a probabilistic pairwise non-structural alignment
obtained using a Pair Hidden Markov Model. Even few pins can decrease the time and
memory requirements significantly, reaching best performance when they are evenly
spaced. Depending on the constrains, STEMLOC can reach O(n2) time and memory
complexity, and CONSAN can reach O(n3) time and O(n2) memory complexity for
two sequences.
FOLDALIGN [54] performs local instead of global alignment, which can detect

common motifs in the input sequences. The algorithm uses a sliding window on each
sequence to limit the search for motifs. Windows have a limited size parameterized
by the maximum size of a motif, λ. Further speedup is achieved by limiting the
difference in size of two subsequences using a second input parameter, δ. The total time
complexity is O(n2λ2δ2 + Nλ4δ2), where N is the maximum number of structural
local alignments to be extracted from the sequences.

The SLASH(Stem-Loop Align SearcH) system [47] combines FOLDALIGN [46]
and COVE20 [41]. FOLDALIGN is applied on a small subset of the sequences, produ-
cing a set of local structural alignments. These local structural alignments are combi-
ned to form a set of multiple alignments, each one describing a local motif. SLASH
then uses COVE to search for occurrences of each of these motifs in the remaining
sequences. SLASH detects only stem-loop structures, not branch structures, due to the
use of an older version of FOLDALIGN.

Stochastic optimization

RAGA [101] and COFOLGA [137] use genetic algorithms to produce global structu-
ral alignments from unfolded pairs of sequences. In both cases, the population of
individuals consists of putative pairwise alignments of the input sequences. Mutation
operators change the alignments performing localized changes such as gap inser-
tion or gap shift. Crossover operators generate descendants that keep the common
alignment blocks of the parent alignments with a combination of the remaining align-
ment blocks.

20 See Sect. 6.
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RAGA (RNA Alignment by Genetic Algorithm) [101] and its parallel versionPRAGA
(Parallel RAGA) both require one of the sequences to be previously folded. Compati-
bility with this sequence’s structure is used to evaluate the population of alignments.
Both programs accept pseudoknots in the alignments.
COFOLGA (COmmon FOLding by Genetic Algorithm) [137], does not require

any previous folding. Instead, it implements a variation of the simulated annealing
algorithm described by Schmitz [129] to fold the pair of aligned sequences. In this
variation, helices that are not compatible with the alignment of the sequences are
discarded (that is, helices that occur only on one of the sequences). The score of the
alignment and the free energy value of each structure are combined to obtain the
individual score used in the selection process. In addition to the common structure, a
post-processing step also predicts structures specific for each sequence.

5 Structural comparison

Structure comparison calculates how different two structures are. We can measure this
difference by computing an edit distance between these two structures. The edit dis-
tance depends on how many edit operations we need to transform one of the structures
into the other and on the cost of each type of edit operation. The computation of the
edit distance is directly related to the way that structures are represented and at which
resolution level the comparison is performed. Three common ways of representing
structures are trees, bracket strings and generic graphs. Resolution levels range from
base pairs to structural patterns like helices, loops and multi-loops.

5.1 Using trees and strings

When using trees to represent structures, the edit operations used to compute distance
are the insertion and removal of nodes. Some programs label the tree nodes with
numerical information, affecting the weight of each operation.
RNAdistance [62] defines three resolutions: full, coarse grained or weighted

coarse grained. Full resolution uses two representations: bracket strings and trees.
Both coarse grained and weighted coarse grained use trees. Bracket strings use matched
open and close brackets (or parenthesis) to indicate paired bases, while dots indicate
unpaired bases [62]. The distance between two structures in this representation is
computed as the number of gaps needed to produce an alignment of the respective
strings. The trees used to represent full resolution, homeomorphically irreducible trees
(HITs) are composed of two types of nodes, P for paired bases and U for unpaired
ones. Each node is labeled by the number of consecutive paired or unpaired bases,
respectively. For instance, a helix having three consecutive base pairs is represented by
the node P3. The trees used to represent coarse grained and weighted coarse grained
resolution have five types of nodes [132]: “stem”, “hairpin”, “bulge”, “internal loop”
and “multi-loop”. The difference is that in weighted coarse grained, the nodes are
labeled with their size (base pairs for helices, and single bases for all others).
MiGal [3] uses trees with only two types of (unlabeled) nodes: “helix” and “loop”.

On the other hand two new edit operations are used: “edge fusion” and “node fusion”.
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These new operations enable to associate, for instance, one long helix to two smaller
helices separated by an internal loop or bulge, instead of performing an one-to-one
association (one helix to just one of the smaller helices) demanded by the traditional
tree edit operations described above.

5.2 Using graphs

A secondary structure can also be represented as a generic graph (i.e. not a tree).
This allows the application of graph theory techniques to perform topological graph
comparison. One possible mapping is modeling loops as nodes and helices as edges.
The second smallest eigenvalue of the Laplacian matrix of a graph is a measure of its
connectivity, which indicates the branching pattern of the secondary structure [6]. This
value, together with the number of vertices, can be used to cluster similar structures.
RNAMute [20] uses graphs along with tree edit metrics to predict structural changes

caused by point mutations.
The same principle is used to characterize and search RNA structures in the RAG

database [45]. This database is a catalog of real and hypothetical secondary struc-
tures in graph format, accumulating information about topological features (including
pseudoknots) and RNA families presenting specific structures. Given the secondary
structure of an RNA of interest, RAG outputs structurally isomorphic RNAs from its
database.

5.3 Using the entire folding space

RNApdist [62] compares the whole folding space of two sequences to compute a
distance value. The computation of this distance takes into account the average length
of the two sequences and the similarity score S of the alignment of their folding spaces.
The folding space of each sequence is represented by three vectors, p<, p> and po,
where p<

i , p>
i and po

i are the probability of a position i of a sequence being upstream
paired, downstream paired and unpaired, respectively. These values are calculated
using the thermodynamic base pair probability matrix of that sequence:

p<
i =

∑

j>i

pi j p>
i =

∑

j<i

pi j po
i = 1 − p<

i − p>
i (5)

Given two positions i and k from the sequences A and B, respectively, the score γ (i, k)

to align these two positions is defined as

γ (i, k) =
√

p<
i (A)p<

k (B) +
√

p>
i (A)p>

k (B) +
√

po
i (A)po

k (B) (6)

The score of a particular alignment of A and B is

γ̂ (
−→
i ,

−→
k ) =

∑

i aligned k

γ (i, k) (7)
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and the score of the optimal alignment is

S(A, B) = max
(
−→
i ,

−→
k )

γ̂ (
−→
i ,

−→
k ) (8)

Finally, a distance δ(A, B) between the two sequences A and B is defined as

δ(A, B) = |A| + |B|
2

− S(A, B) (9)

where |A| and |B| are the lengths of the sequences A and B, respectively.

6 Noncoding RNA identification

With the exponential growth of the sequencing data being generated, the task of scan-
ning a new genome to find candidate ncRNA genes is becoming increasingly important.
Computational detection of ncRNAs in general is a challenge and considered an open
problem. A sensible approach is either the development of identification programs
targeted to very specific ncRNA families, using as much as possible peculiarities of
these families, or to create more general programs that can be trained to identify cha-
racteristics of a specific family or even a single input sequence. Still, the development
of general ncRNA gene-finders is still a very important challenge, since it is also
desirable to search for new gene families.

Gene finders can be implemented as genome scanners or as a classifiers. Genome
scanning is often performed by sliding a window and analyzing its sequence. Classifiers
receive an input and output a label to it. This input can be a sequence in the case of an
ab initio gene finder or an alignment in the case of a comparative gene finder. In the
last case, input sequences can be obtained by using a sliding window over the genome
or from transcript sequences.

6.1 General ncRNA gene-finders

6.1.1 Ab initio methods

Using only thermodynamic information

Le et al. [83] proposed that structured RNAs have a lower free energy than random
sequences with the same mononucleotide frequency. This characteristic could be used
to detect putative ncRNAs by sliding a window over a genome and comparing its
MFE with shufflings of the same sequence. The program NCRNASCAN [118] was
implemented to test this strategy. However, the authors showed that, although most of
the ncRNAs present this energetic difference, this difference is not significant enough
to be used as a general ncRNA discriminator.

Considering the fact that the MFE calculation is based on base stackings, Workman
and Krogh [152] argued that the MFE of the original sequence should be compared with
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shufflings that preserve the dinucleotide frequency, and not only the mononucleotide
one. The program RANDFOLD [11] was implemented based on this argument. It was
used to show that, although some ncRNAs do not have a significant lower energy,
precursor microRNAs do have. Posterior work [23] showed that other ncRNAs can
also be detected by the significance of their folding energy.

When performing thermodynamic calculations, the minimum free energy value is
affected if extra nucleotides are included in the upstream and/or downstream of a
real RNA. Similarly, missing nucleotides also have a deleterious effect. This has an
important impact when scanning a genome with a sliding window, since the size of
the window cannot be guaranteed to match exactly that of the ncRNAs that are being
searched. The problem of missing nucleotides can be overcome using a window large
enough to accommodate the any putative ncRNA, but the effect of additional nucleo-
tides remains. As a consequence, a single folding of each window will produce an
unreal energy value. To decrease this problem, RNAplfold [8] combines the infor-
mation obtained from all individual windows from a genome. Given a window length
L , the stable structures of the genome are detected by computing, for all positions i
and j the average probability of two bases at positions i and j being paired. This pro-
bability is calculated considering all possible structures in all L-size windows having
the bases i and j .

Using compositional information

Noncoding RNAs are reported to have on average, a G + C content of 50% [118].21

This fact inspired ncRNA search using compositional statistics. Success was achieved
when searching GC-rich islands in some AT-rich organisms [74]. Similar strategy
using other mono and dinucleotide statistics was also performed in other organisms,
being the G + C one of the most significant statistics in the successful tests [126].

Using machine learning techniques

Machine learning approaches are an interesting option when designing adaptable gene
finders. Once a model is designed it can be trained to recognize a specific gene
family from samples of existing genes. CONC [86] is a program developed to ana-
lyze transcribed sequences using Support Vector Machine technology (SVM). It was
implemented to classify a sequence either as protein-coding or noncoding RNA. It uses
a set of features to characterize protein-coding sequences such as aminoacid compo-
sition, peptide length and other more specific features. The positive training sample
is a set of protein-coding sequences whereas the negative one is a set of noncoding
RNAs.

21 G + C content is the percentage of bases that are either G or C.
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6.1.2 Comparative methods

Given two or more related species, it is possible to perform alignments of their whole
genomes to find the maximum regions of similarity between them. In the case of
multiple genomes, these alignments can be built comparing two genomes at a time
and then building a multiple alignment by extracting aligned regions common to all
genomes. Once a multiple alignment is available, either thermodynamic information or
covariation analysis can supply evidence for a ncRNA labeling. This means, however,
that almost all programs depend heavily on the quality of these initial alignments.

The program ddbRNA [7] computes the number of compensatory mutations in a
multiple alignment and its z-score by shuffling the alignment. In spite of being very
fast (O(n2)) this program has very low reliability (average sensitivity of ∼22% for
pairwise blast alignments), and has not been used in real-life applications [148].
MSARI [26] decreases the dependence on the quality of the initial alignment by

allowing misalignments with up two characters of distance. In addition, the signi-
ficance of covariations is calculated taking into account the possibility of random
nucleotide substitutions causing covariation. Still, to achieve high accuracy, MSARI
needs a deep alignment of 10–15 sequences.
QRNA [119] uses three different probabilistic models to classify pairwise align-

ments: a pair-SCFG model for ncRNAs, a pair-HMM model for protein coding RNAs
and a position-independent pair-HMM for “other” sequences.22 Originally, QRNA had
low reliability for alignments outside the optimal identity range of 65–85% [148],
however, a newer version, eQRNA [116], includes the evolutionary distance between
the sequences in the model parameters, achieving better results.
RNAZ [148], a development of RNAalifoldz [147], is a Support Vector Machine

classifier that uses two scores to classify multiple alignments as ncRNA or not:
z-scores23 of the individual sequences from the input alignment and a structure conser-
vation index (SCI). The last is given by E A/E , where E A is the alignment thermo-
dynamic score given by the RNAalifold and E is the average free energy of the
individual sequences (given by theRNAfold). The idea is that, the higher the structure
conservation and covariations, the higher the SCI is.

As we have mentioned above, all comparative methods described above depend
of the alignment accuracy. Even MSARI only reports good results for alignments
having identity superior to 50%. Recent work by Uzilnov et al. [143] proposed a
method that does not require an initial alignment by using Dynalign, a tool for
conserved secondary structure prediction.24 Dynalign simultaneously aligns and
folds two sequences considering only thermodynamic information. Since the program
outputs the free-energy of the alignment, this can be used to calculate the alignment’s

22 We can say that “other” means “I have no idea”.
23 The z-score computation needs the average and standard deviation of the scores of negative sequences.
Often, these measures are calculated using shufflings of the input sequence. Instead, RNAZ pre-computed
these values for specific sequence lengths and base compositions using a Support Vector Machine regression.
It speeds up the RNAZ runtime.
24 See Sect. 4.2.3.
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thermodynamic z-score.25 In tests involving low-identity sequences (less than 50%),
Dynalign outperformed RNAZ both in sensitivity and specificity.

6.2 ncRNA gene-finders based on a set of known sequences

These gene-finders address the problem of, given a set of genes from the same RNA
family, analyze another sequence set and classify each one as belonging to that first
family or not.

Stochastic context free grammars were originally proposed to characterize RNA
families and search homologous by the independent and simultaneous work of
Sakakibara et al. [124] and Eddy and Durbin [41].

Sakakibara et al. [123] designed grammars for tRNAs and snoRNAs [142] by hand.
Each grammar was used to parse sequences, computing a probability value. Sequence
classification was performed based on z-score calculation (details in [78]).

In contrast, Eddy and Durbin developed the INFERNAL package [41] (previously
called COVE) using a specific type of SCFGs called Covariance Models. INFERNAL
includes programs to automatically infer a grammar from a structural multiple align-
ment (which will characterize an ncRNA family) and to scan a genome using one such
grammar, searching for candidate homologous sequences. One important characte-
ristic of INFERNAL is using a search algorithm more memory efficient than other
SCFG-based ones (O(n2 × logn) against O(n3)) [39], which allows the search for
long ncRNA sequences such as ribosomal RNAs.
Rfam [49,50] is a database system that stores covariance models for 503 different

ncRNA families (release 7.0) and that uses INFERNAL to identify candidate ncRNAs
in an arbitrary input sequence (possibly a whole genome). Since analyzing the input
data using all of the 503 models would be too slow, a previous Blast-based filter is
applied to select promising models. This similarity filter imposes restrictions on the
degree of variation that is acceptable for finding ncRNAs. Weinberg et al. [150,151]
proposes a different filter, based on profile HMMs, to minimize this effect. These
filters, however, are not part of the Rfam database.

Analyzing a sequence, even by a single SCFG, can be slow. The O(n4) time com-
plexity means a long time waiting for the analysis of longer sequences. To speed
up this process, parsing constrains were implemented in the SCFG-based RNACAD
[14] package, a software used in the Ribosomal Database Project (RDP-II) [24]. Each
constrain limits the subsequences that may be recognized by a given non-terminal.
These constrains are generated automatically by building an HMM that approximates
the SCFG, and identifying subsequences associated with an HMM state with high
probability. These associations constitute the SCFG constrains.

Context-free grammars cannot model crossed dependences, and therefore are also
unable to model pseudoknots [131]. We can model a pseudoknot, however, by
modelling each of the two helices separately. One such model based on intersec-
tions of SCFGs is described by Brown and Wilson [15]. This work describes how

25 Another option explored in this work was the use of the alignment energy as a feature of a Support
Vector Machine classifier (faster but slightly less sensitive).
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to estimate the probabilities of the grammar combinations and also how to parse
sequences keeping the time and complexities of O(n3) and O(n2), respectively.
PSoL [145] proposes a very flexible manner of parameterizing classification. It

receives as input feature vectors of the training sequences (the RNA family to cha-
racterize) and of the search data base and then selects a set of significant features
to be used in the classification process. PSoL uses SVM technology and, therefore,
needs positive and negative training samples. While the positive sample is a set of
ncRNAs of interest, a proper definition of a negative sample is not trivial. Therefore,
PSoL (Positive Sample only Learning) implements a strategy to select this negative
sample directly from the unlabeled sample (sequences to be classified). An initial
set of negative sequences are selected in order to maximize the distance between the
the positive and the current negative sample as well as the mutual distance between
negative training sequences.26 After an initial training using this sample, the classi-
fication is started and the negative sample is incrementally expanded, retraining the
SVM. This process is performed until the unlabeled sample reaches a threshold size.
PSoL was developed to perform a search for any ncRNA in a database, having as a
training sample a mixed set of ncRNAs families. However, it is clear that the approach
is flexible enough to also be applied to specific gene families.

There are two ncRNA gene finders that do not perform previous statistical trai-
ning, RSEARCH [73] and FastR [5]. Both accept as input a RNA sequence and
its secondary structure and search a database to find sequences similar to the input
by performing local pairwise structural alignments. To build this alignment, both
use RIBOSUMs, RNA-specific substitution matrices developed for RSEARCH. Both
methods, in addition to the alignment score, output the score significance. Scanning a
database, however, may be a time consuming task. For a query sequence of length n
and a database of length m, the worst case time complexity for scanning is O(mn3),
plus an additional O(n4) for statistical significance calculations.RSEARCH tries to cir-
cumvent this difficulty by also offering a parallel implementation. FastR, in contrast,
uses structural filters to pre-select promising sequences.

6.3 Family-specific ncRNA gene finders

In order to pursue better sensitivity and specificity, some methods are tailored to deal
with specific families of RNAs, exploring features specific to each of them. Some of
these methods were implemented and are available as standalone programs or web
services. Others methods were never made available as integrated programs, being
searching methodologies that were used together with heuristics, manual refinements
and expert inspection, sometimes using more general tools such as those mentioned
throughout this paper [108,112,140]. A complete listing of all of them would be
inappropriate. Therefore, we selected some methods from the first group in order to
exemplify how the a priori knowledge about an RNA family can be used to build a
family-specific ncRNA gene finder.

26 The last requirement intends to minimize the redundancy and improve the cover of the negative sample.
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Transfer RNAs (tRNAs) are sequences having between 74 and 90 bases, trans-
cribed by RNA polymerase III, that fold in a clover-leaf structure. The program
tRNAscan-SE [87] is considered one of the most accurate tRNA predictors [81].
It combines three programs: two tRNA predictors that search for RNA polymerase
III promoters and characteristic secondary structure [42,105] and a core Covariance
Model [41] trained with tRNAs sequences. The first two programs are fast and, when
combined, have a sensitivity superior to ∼99%. However, such combination implies
roughly ∼1.85 false positives per Mb, which is acceptable for small genomes, but it
means ∼5,500 false positives in the human genome. The Covariance Model is very
sensitive and specific, but too slow. Therefore, the first two tRNA predictors are used
with low stringency as pre-filters in order to get promising tRNA candidates from a
genome. Then the candidates are analyzed by the highly stringent covariance model.
The result is a tRNA finder presenting higher sensitivity (99–100%) and selectivity
(with a rate lower than 0.00007 false positives per Mb) with reasonable speed (30 Kb/s).

Transfer-messenger RNAs (tmRNAs) are sequences having between 350 and 400
bases27 that are able to liberate defective mRNAs from stalled ribosomes [52]. The
5′ and 3′ ends of this molecule form a tRNA-like domain that surrounds an internal
region consisting of stem-loops, pseudoknots and a messenger RNA domain. The last
codes for a tag peptide that signals the defective mRNA for degradation [82].
ARAGORN [81], an improved version of BRUCE [82], is a program that identifies

tmRNAs by selecting candidates having specific tRNA sequence motifs involving the
5′ and 3′ ends and inspecting the predicted secondary structure. In addition, ARAGORN
analyzes the regions around the tag peptide to analyze if they can fold in specific
structural motifs. ARAGORN can also detect tRNAs with a sensitivity comparable to
tRNAscan-SE, but does not match its specificity.

Small nucleolar RNAs (snoRNAs) are sequences having between 60 and 300 bases
that are related with site-specific modifications of other RNAs [95]. They are divided in
guide and orphan snoRNAs, depending on the presence or absence of a known RNA
target. Depending on their secondary structure, they are classified as C/D box and
H/ACA box. The secondary structure of C/D box snoRNAs is basically a hairpin-like
structure with a large hairpin-loop, where some regions located in this loop (C and D
boxes) have a conserved sequence. This loop also has regions that are complementary
to the target RNA. The secondary structure of H/ACA box snoRNAs consists in two
consecutive helices, each one followed by a conserved loop region (H box after the
first helix and ACA box after the second one). In addition, each helix has an internal
loop whose sequences are complementar to the target RNA.

The program snoscan [88] is a guide C/D box snoRNA finder that uses a SCFG
to model the hairpin, one HMM to each conserved region and a length distribution
model to characterize the distances between the conserved regions. The combined
model is then used to score snoRNA candidates. This program can only detect guide
snoRNAs due to the fact that one of the HMMs models the target-binding region for

27 C. merolae tmRNA is exceptionally smaller, having only 235 bases [103].
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known targets. Combination of different models for distinct regions is also employed
by snoGPS [128] to identify guide H/ACA snoRNAs. Weight matrices are used to
model several regions of primary sequence (boxes, internal loops and separate helix
sides) and length distribution models are used to connect them. Recently, a snoRNA
finder for both guide and orphan snoRNAs was developed. The snoSeeker system
[154] consists of two programs: CDseeker and ACAseeker. They first search for
all conserved regions (boxes) and then search for the structural evidences (helices) of
the corresponding snoRNA type. The last step is to search for targets matching the
complementar target-binding region.28 If the target is found, the candidate is classified
as guide, otherwise it is classified as orphan.

Micro RNAs (miRNAs) are initially transcribed as sequences between 60 and 90
bases that fold in a stem-like structure (pre-miRNA). This sequence is processed,
producing two molecules of ∼21 bases, each one coming from one stem side. The
sequence originated from the 5′ side will anneal with a target mRNA in order to avoid
its translation.29 This processed sequence is well conserved across species, the initial
portion being the most conserved.

Micro RNA predictors, in addition to searching for miRNA’s common features, also
search for evolutionary conservation. For instance, miRseeker [80] and mirScan
[84] use the sequence of two genomes of different species to identify candidate
miRNAs conserved in both. These genomes are searched for potential stem-loop
structures that, if conserved, are selected as pre-candidates for posterior analysis.
The programs miralign [146] and ProMirII [100] use a set of known miRNAs
and compare them with miRNA candidates in an input genome. Finally, RNAmicro
[55] does not search a genome, but instead classifies multiple sequence alignments.

7 Perspectives and conclusion

There is no tool that solves a problem for any kind of RNA. A good practice is to
carefully choose a set of applicable methods which different approaches and compare
the results. In addition, insertion of a priori knowledge is a powerful strategy, which is
particularly relevant in noncoding RNA research where the solution space is often too
large. For secondary structure prediction, alternative structures should be analysed
instead of just the optimal one, constrains should be inserted if partial information
about the structure is available, the predicted folding process should be analysed by
kinetic tools, and comparative methods should be also used if homologous sequences
are available. For ncRNA searching, different suitable methods should be used in order
to build a combined set of candidates.

The thermodynamic approach has been shown to yield the most accurate results for
ab initio secondary structure prediction. Therefore, most of the methods that perform a
folding space analysis, such as density of states, are based on this approach. Recently,
a novel method using probabilistic models,CONTRAfold [34], outperformed the best

28 The target RNAs are assumed to be rRNA or snRNAs.
29 In some miRNAs both sequences can be used into different mRNA targets.
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thermodynamic predictors for the first time. A next step is to explore the use of this
model in the folding space analysis.

Since there may exist unknown ncRNA families, tools for searching general
ncRNAs are desirable. Until few years ago, no satisfactory method was available.
Recently, new methods were developed and achieved results that has been bringing
some light at the end of the tunnel.

Methods incorporating evolutionary models have presented promising results. One
particular general ncRNA finder that performs a comparative strategy, EQRNA [116],
parameterized the time divergence between the two organisms being compared. The
same approach could be adopted by trainable ncRNA finders, in order to adapt its
parameters according to the phylogenetic distance between the target organism and
those used in the training sample.

The ncRNA research has a long road ahead. Current methods are based on our
knowledge about ncRNAs. But probably we know only a small fraction of the RNA
world. Adding insights and speculations to our current knowledge may help us to
discover new facets about this world and, in turn, improve computational tools.

Finally, we would like to reinforce that all these methods make predictions. The-
refore, their results can not be considered the supreme truth even when more than
one method are in agreement. A biological experimentation is needed for a reliable
validation of in silico predictions.
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Appendix

Tables 1 to 3 present a list of all available programs or web servers.

Table 1 Some available programs and web servers for secondary structure prediction

Method URL

Secondary structure prediction

Ab initio

CONTRAfold [34] http://contra.stanford.edu/contrafold/

HotKnots [115] http://www.cs.ubc.ca/labs/beta/Software/HotKnots/

ILM [121,122] http://cic.cs.wustl.edu/RNA/

Kinfold [43] http://www.tbi.univie.ac.at/∼xtof/RNA/Kinfold

MFOLD [157,158,160] http://www.bioinfo.rpi.edu/applications/mfold/

MWM [136] ftp://ftp.cshl.org/pub/science/mzhanglab/tabaska/

NUPACK [32,33] http://www.acm.caltech.edu/ niles/software.html

PKNOTS [117] http://selab.janelia.org/software

pknotsRG [110,130] http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/

RNAfold [59] http://www.tbi.univie.ac.at/∼ivo/RNA/

RDfolder [156] http://rna.cbi.pku.edu.cn/

RNAKinetics [28] http://bioinf.fbb.msu.ru/RNA/kinetics/
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Table 1 continued

Method URL

RNALOSS [21,22] http://clavius.bc.edu/∼clotelab/RNALOSS/

RNAshapes [134,144] http://bibiserv.techfak.uni-bielefeld.de/rnashapes/

RNASTRUCTURE [93] http://rna.urmc.rochester.edu

RNAsubopt [153] http://www.tbi.univie.ac.at/∼ivo/RNA

Sfold [30,31,16] http://sfold.wadsworth.org/index.pl

Comparative

BayesFold [75] http://jaynes.colorado.edu/Bayes/

Bouthinon et al. [12] Available upon request

CARNAC [139] http://bioinfo.lifl.fr/carnac

COFOLGA [137] Available upon request

comRNA [67] http://ural.wustl.edu/∼yji/comRNA/

Consan [36] http://selab.wustl.edu/people/robin/consan

ConStruct [90] http://www.biophys.uni-duesseldorf.de/local/ConStruct

Dynalign [92,94] http://rna.urmc.rochester.edu

FOLDALIGN [54] http://foldalign.kvl.dk

ILM [121,122] http://cic.cs.wustl.edu/RNA/

MARNA [133] http://biwww2.informatik.uni-freiburg.de/Software

MWM [136] ftp://ftp.cshl.org/pub/science/mzhanglab/tabaska/

Pfold [76,77] http://www.daimi.au.dk/∼compbio/rnafold/

PMComp/PMMulti [60] http://www.tbi.univie.ac.at/∼ivo/RNA/PMcomp/

RAGA/PRAGA [101] http://igs-server.cnrs-mrs.fr/∼cnotred/

RNAalifold [61] http://www.tbi.univie.ac.at/∼ivo/RNA/

RNA_align [68] http://www.csd.uwo.ca/∼bma/rna_align

RNA-Decoder [106] http://www.ebi.ac.uk/∼meyer/rnadecoder/

RNAforester [57] http://bibiserv.techfak.uni-bielefeld.de/rnaforester

RNAGA [17] ftp://ftp.ncifcrf.gov/pub/users/chen/rnaga.tar.Z

RNAscf [4] Available upon request

Stemloc [63] http://biowiki.org

SLASH [47] http://www.bioinf.au.dk/slash

X2 [70] http://tyrant.ucsc.edu/X2s

Table 2 Some available programs and web servers for structure comparison

Method URL

Structural comparison

MiGal [3] http://igm.univ-mlv.fr/ allali/migal/

RAG database [45] http://monod.biomath.nyu.edu/rna

RNAdistance [62] http://www.tbi.univie.ac.at/∼ivo/RNA

RNAMute [20] http://www.cs.bgu.ac.il/ RNAMute/

RNApdist [10] http://www.tbi.univie.ac.at/∼ivo/RNA
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Table 3 Some available programs and web servers for ncRNA identification

Method URL

NcRNA identification

General

NCRNASCAN [118] http://selab.janelia.org/software

RANDFOLD [11] http://bioinformatics.psb.ugent.be/software.php

RNAplfold/RNALfold [8] http://www.tbi.univie.ac.at/∼ivo/RNA

ddbRNA [7] http://www.tigem.it/Research/

Personal%20Web%20Page_files/

dibernardo/links.htm

Dynalign [143] http://rna.urmc.rochester.edu

EQRNA [116,119] http://selab.janelia.org/software

MSARI [26] http://theory.csail.mit.edu/MSARi

Rfam database [49,50] http://rfam.wustl.edu

RNAZ [148] http://www.tbi.univie.ac.at/simwash/RNAz

Query-based

INFERNAL [39] http://selab.janelia.org/software

RNACAD [14] http://www.cse.ucsc.edu/∼mpbrown/rnacad

RSEARCH [73] http://selab.janelia.org/software

Family-specific

ARAGORN [81] http://bioinfo.thep.lu.se

miralign [146] http://166.111.201.26/miralign

mirScan [84] http://genes.mit.edu/mirscan

miRseeker [80] http://www.fruitfly.org/seq_tools/miRseeker.html

ProMirII [100] http://cbit.snu.ac.kr/∼ProMiR2

RNAmicro [55] http://www.bioinf.uni-leipzig.de/Software

snoscan [88,127] http://lowelab.ucsc.edu/snoscan

snoGPS [127,128] http://lowelab.ucsc.edu/snoGPS

tRNAscan-SE [87] http://lowelab.cse.ucsc.edu/tRNAscan-SE
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